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Abstract—This paper presents an adjustable multiple image
technique (MIT) and an anisotropic perfectly matched layer
(APML) employed in the context of multiresolution time-do-
main (MRTD) scheme for the truncation of the computational
boundary, with the MIT used for perfect electrically conducting
(PEC) shields and the APML for open structures. We begin by
presenting a systematic formulation for developing the constitutive
relations and update equations in the transform domain of the
MRTD, when considering both the original and image regions.
We then illustrate the applications of the above techniques by
analyzing a two-layer dielectric-loaded cavity, printed circuit
enclosed by a PEC, as well as open transmission lines. Although,
in principle, one can employ a large number of images to ensure
the accuracy of the MRTD computation, in practice, it is useful,
from the point-of-view of computational efficiency, to develop a
criterion that determines the number of requisite images. While
its formulation may appear to be lengthy, the MIT is based
on physical concepts that are fairly well suited for computer
programming, it places relatively little additional burden on
the memory requirement. In addition, it provides the user the
flexibility of choosing the number of images along each side of
the structure. The computed results for all cases investigated
show excellent agreement with those obtained by using other
techniques, and yet, the demand on the computational resources
in the MRTD is much less than that needed in the finite-difference
time-domain algorithm.

Index Terms—Anisotropic perfectly matched layer, dielectric-
loaded cavity, multiple image technique, multiresolution time-do-
main scheme, printed transmission line.

I. INTRODUCTION

T HE multiresolution time domain (MRTD) scheme for
solving electromagnetic-field problems, introduced by

Krumpholz and Katehi [1] and Robertsonet al. [2], is based on
expansions of unknown fields in terms of scaling or wavelet
functions. It has been shown that the use of the MRTD improves
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the computational capacity and efficiency over those of the
conventional finite-difference time-domain (FDTD) method
[1]–[5]. Although the concept of image theory for truncating a
computational domain bounded by perfect electric conductors
(PECs) has been introduced previously in the context of MRTD
[1], the procedure for generating these images on different
sides of a structure is neither obvious, nor straightforward,
particularly when complex materials and multiple images are
involved.

The MRTD approach described in this paper is different from
those published previously in the following two ways. First, we
retain the philosophy of the leapfrog algorithm employed in the
conventional FDTD and place the MRTD scheme in the con-
text of the FDTD. Second, we present a systematic approach,
referred to here as the multiple image technique (MIT), for in-
corporating the image theory in the MRTD scheme for boundary
truncation of PEC-shielded structures. The primary motivation
behind introducing the MIT is to provide the user with the flex-
ibility to vary the number of side images, and thereby strike
a balance between accuracy and memory saving. An obvious
advantage is that the additional images do not require addi-
tional memory in the MIT–MRTD implementation. We illus-
trate the application of the MIT by analyzing a two-layer di-
electric-loaded cavity, and develop a systematic formulation for
constructing the constitutive relations and update equations in
the MRTD transform domain by utilizing only the field quan-
tities defined in the real structures. Furthermore, we present a
criterion for determining the number of images needed along
each side of the structure that is based on the localization prop-
erties of the scaling basis functions. Although, in principle, we
can construct as many images as we desire, it is highly desir-
able to limit their number from the point-of-view of balancing
the numerical efficiency and accuracy.

In this paper, we also present a two-dimensional (2-D) version
of the MRTD, in conjunction with the unsplit anisotropic per-
fectly matched layer (APML), for the analysis of printed trans-
mission lines. We apply the MIT-APML concept for the anal-
ysis of microwave structures with inhomogeneous materials, in-
cluding different dielectrics and conductors with infinite con-
ductivity. Such imaging is needed to handle the boundaries in
the MRTD formulation.

0018-9480/02$17.00 © 2002 IEEE
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II. MIT–MRTD M ETHOD FORPEC-SHIELDED STRUCTURES

A. MRTD Update Equations

By using the generalized differential matrix operators
(GDMOs) [6], the two curl relations of the Maxwell’s equa-
tions can be expressed as

(1)

(2)

where, for generality, we assume that the relative permittivity is
a biaxial tensor. The associated constitutive relation in the space
domain then becomes

(3)

In the MRTD domain, the above local relationship between-
and -fields is no longer valid; hence, we must work simulta-
neously with both the - and -fields.

As a first step in the MRTD formulation, we begin by repre-
senting all the field quantities in terms of the scaling function in
space and pulse function in time as follows:

(4)

(5)

where denotes the cubic spline Battle–Lemarie scaling
function [7], [8], and is a rectangular pulse function. Sub-
stitution of the above field expansions into the Maxwell’s equa-
tions, followed by the application of the Galerkin’s method [9],
leads us to the following set of update equations:

(6)

(7)

where the quantities being updated are the expansion coeffi-
cients in the field expansions, and their corresponding super-
scripts and subscripts represent the discretized time and space
positions, respectively. The coefficient , appearing in (6)
and (7), may be derived by utilizing a nonorthogonal relation-
ship [1], [4]. Although the summation index in (6) and (7)
spans from positive to negative infinity, it is usually sufficient
to truncate it at nine, by taking advantage of the localized na-
ture of the Battle–Lemarie scaling function.

B. MIT for the Derivation of the Constitutive Relationship

The constitutive relationship in the transform domain of the
MRTD is considerably more involved than its counterpart in
the spatial domain presented in (3). This is because the MRTD-
transformed -field at a particular point is determined not only
by the -field at the same location, but also by the distribution
of the -field in its neighborhood. To solve for the constitu-
tive relation in the MRTD domain, we once again represent the

-fields as expansions in terms of the same basis functions as
(4), and substitute the above expansion into (3). Next, an ap-
plication of the Galerkin’s method leads us to the constitutive
relationships in the MRTD domain that read

(8)

where

(9a)

(9b)

where we assume all dielectric objects are rectangular, andis
the total number of dielectric objects.

We now present an example of deriving the constitutive rela-
tionship for a two-layer dielectric-loaded cavity, shown in Fig. 1.
By expressing

otherwise
(10)
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Fig. 1. Geometry of a two-layer dielectric-loaded cavity.

we can write the -component of the constitutive relation in the
MRTD domain

(11)

with

(12)

where is the number of the sampled-fields in the MRTD
domain. It is usually set equal to a number slightly greater than
nine by taking advantage of the localization of the scaling func-
tion.

It is very important to note that the summations in (11) not
only cover the original computation domain, but also the entire
image regions, as shown in Fig. 2. In fact, for a PEC-shielded
structure, all of the field quantities in the image regions can
be expressed in terms of the ones inside the original cavity
structure. Toward this end, we employ the following principle.
The tangential components of the image-fields (parallel to
the PEC mirror wall) or the normal components of the image

-fields (normal to the PEC mirror wall) are always odd sym-
metric about the original fields, while the normal components of
the image -fields and the tangential components of the image

-fields are even symmetric. Using the above guidelines, we
can express all of the image field quantities in terms of the fields
in the original region, and this leads to a degeneration of the
summation index in (11) to , the grid number along the-di-
rection, defined only inside the original cavity structure. Conse-
quently, (11) can be simplified to read

(13)

Fig. 2. Original structure and multiple images in they–z-plane.

where we define the equivalent permittivity matrix in the MRTD
domain as follows:

(14a)

or in a matrix form as

(14b)

where the is the number of images. The first term in (14b)
corresponds to the original structure, and the rest are associated
with the images.

Next, we present a criterion for determining the number of
image , along the -direction (positive or negative). The crite-
rion is derived from the knowledge of the effective range of the
basis functions at the PEC boundary locations as follows:

if is not an integer

if is an integer
(15)

where is the integer-converting function that truncates all
the decimal parts of a number. For example, if

, this implies that we need three
images in both sides of the - and -directions.

We will now illustrate the procedure for deriving the equiv-
alent permittivity matrix in the MRTD domain. We consider a
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cavity with the discretization grid number in the -di-
rection. For the sake of simplifying the notation, we omit the
subscript , and write simply as . In this example,
we choose and . We then have

(16)

with

(17a)

(17b)

(17c)

(17d)

(17e)

where (17a) is associated with the original structure, while
(17b)–(17e) are contributed by the image regions. As seen from
the above equation, these latter contributions to the equivalent
permittivity matrix decreases dramatically with the increase
in the number of image regions ( ). Since the elements of
the equivalent permittivity matrix only depend on the basis
functions and the material properties of the structure, both the

and its inverse can be computed in advance and
saved in the MRTD Maxwell solver for the update equations.
Consequently, the -field can be updated as follows:

(18)

where, we apparently only need to compute the product of two
small matrices, whose dimensions are typically six or less in this
study, to update the -fields at each time step.

C. MIT in Update Equations

Although, in principle, (6) and (7) can be employed to update
the fields, they are numerically inefficient and somewhat im-
practical for coding and computation because the summations
in these update expressions include both the original and image
regions. In this section, we truncate the summations in these up-
date equations by excluding some of the image field quantities.
This is accomplished by carrying out the following two steps.

Step 1) Express all the field quantities in terms of those de-
fined in the original structure by the MIT technique
described in the previous section.

Step 2) Maintain the values and positions of the coefficients
unchanged for all of the terms, but express them

only by using the grid indices inside the structure.
Following this procedure, we can rewrite the update equations
for the -components using the MIT in (19a) and (19b), shown
at the bottom of the following page, where and are
the numbers of cells along the- and -directions inside
the structure, respectively, and the summation indexes [odd

andeven ] denote the contributions to the
updated field quantities from the specified odd or even image
regions, respectively.
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Before concluding this section, it would be worthwhile to
point out that although (19a) and (19b) are quite lengthy, they
are actually quite efficient from the point-of-view of coding and

computation. Since all of the field quantities usually have small
dimensions, the coefficients can be computed in advance
and saved in the MRTD solver for later use.

(19a)

(19b)
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III. 2-D MRTD A NALYSIS FORPRINTED TRANSMISSIONLINES

A. Field Construction

Following the procedure described in [10] and [11], we begin
the 2-D MRTD analysis by deriving a set of governing equations
for the problem at hand, i.e., the lossless guided-wave structure,
shown in Fig. 3. We begin by expanding the field quantities as

(20)

where is the propagation constant for the structure. Next, we
use GDMOs to obtain the following governing equations from
the Maxwell’s curl equations:

(21a)

(21b)

In practice, we set . Note that a printed planar trans-
mission line is usually inhomogeneous in the vertical direc-
tion, but homogenous in the horizontal direction, which leads
to .

B. 2-D MRTD Algorithm

Next, we represent all the field quantities by using scaling
functions in space and pulse functions in time. For instance, for
the -component of the fields, we write

(22)

(23)

Substitution of the field expansions into Maxwell’s equations,
followed by the application of the Galerkin’s method, leads us to

(a)

(b)

Fig. 3. Cross section of the printed transmission lines and their images.
(a) Shielded microstrip line. (b) Open microstrip line.

obtain a set of field update equations. For instance, the-com-
ponents of the update equations are given by

(24)

(25)

where the coefficient is given in [1]. Assuming the con-
ducting strip is infinitely thin, we can express its conductivity
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in (26), shown at the bottom of this page. Thus, we can express
and as

(27a)

(27b)

By considering image contributions and using the first-order ap-
proximation, we can derive

(28)

where is the Kronecker symbol, which is one for , oth-
erwise . Then, we further rewrite the discretized time-domain
equation as

(29)

The summation index in (29) not only includes the regions in
the interior of the original structure, but also the image regions.
Two types of boundaries are frequently used for truncating the
grids, i.e., the absorbing boundary condition for open structures
and the PEC for shielded ones. The PEC boundary is usually
handled by using the MIT described earlier. Fig. 3 shows the
original structures, i.e., shielded and open microstrip lines, as
well as their images. By taking an inverse of the following:

(30)

we can obtain the update equation for the-component of the
-field as follows:

(31)

with

(32a)

(32b)

For a shielded structure, we need to employ the MIT for con-
structing the matrix. Since the matrix and only de-
pend on the basis functions and the material properties of the
structure, they can be computed in advance and saved in the
MRTD Maxwell solver for the update equations.

C. Application of APML

Here, we address the problem of mesh truncation for open
structures. We find that the 2-D version of the lossy uniaxial
APML [12] medium is well suited for this purpose. Since the
APML is applied only in the - and -directions, the frequency-
domain Maxwell’s curl equation in the APML medium can be
written as

(33a)

otherwise
(26)
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(33b)

with

for absorption in direction

elsewhere
(34)

Depending on combination of the values ofand , the above
Maxwell’s equations are applicable to all of the APML regions,
which include two side edges, the top wall, as well as the two
corners. By expanding the above equations for the case of the
corners, we immediately obtain the-components of the fol-
lowing governing equations:

(35)

(36)

Here, we use a two-step update approach to time-stepping fields
inside APML regions. Following the MRTD discretization pro-
cedure described previously, we obtain the desired-field up-
date equations

(37)

(38)

We can employ the same procedure to obtain the remaining-
and -field update equations.

In applications of the MRTD method, we chose the time step
to satisfy the stability and limit condition [1] in all simu-

lations. Starting from the convergence condition of the above

update equations of the -fields, we have empirically proven
that, to obtain good absorption, the APML parameters may be
chosen as follows:

(39)

where is the starting position in thedirection, is the thick-
ness of the APML, and is the number of cells within the
APML region. In principle, it can be shown that this relation-
ship is consistent with the standard form, which can be derived
from a plane wave, normally incidence on a PML region. We
found that we can minimize the reflection error, and have good
absorption, if we choose and – .

D. Computation of the Propagation Characteristic

Typically, for the printed transmission lines, the two param-
eters of interest are the effective dielectric constantand the
characteristic impedance , which can, in general, be derived
from the MRTD calculated field quantities. For example, the
time-domain voltage defined as an integral from the PEC
ground to the strip line can be calculated as follows:

(40)

where is the number of the cells from the bottom ground to
the PEC strip, and the indexesand of the summation span the
original microstrip line and its image regions. The integral co-
efficient forms a localized distribution with the even sym-
metric listed in Table I. We can apply a similar
procedure to solve for all required field quantities.

E. BHW Function Truncation and Modulation

To eliminate the Gibb’s phenomenon that results from an
abrupt truncation of the time-domain response, Blackman–
Harris (BH) window function is used to truncate and modulate
the time domain [11]. We write

(41)

where represents the original time-domain
electromagnetic fields defined in the MRTD algorithm, and

are the windowed versions. Since the
frequency-domain response is the convolution of the fre-
quency-domain signature and its window function, the choice
of the window function can significantly affect the accuracy
of the propagation characteristics. Extremely low sidelobe
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TABLE I
INTEGRAL COEFFICIENTb(j)

Fig. 4. Frequency spectrum ofE at the location[1; 3; 1] for an empty cavity.

levels ( 92 dB) of the BH window ensures the accuracy of
the extracted frequency-domain signals, while the use of the
conventional rectangular window function, which has a much
higher sidelobe level (13 dB), can seriously corrupt the
frequency signatures, especially for a resonant structure.

IV. NUMERICAL RESULTS

A. MIT–MRTD Application

We have applied the MRTD scheme in conjunction with the
MIT to analyze a number of dielectric-loaded cavities, i.e., an
empty cavity, two partially filled (25% and 50%) cavities con-
taining a single dielectric medium, and two different two-layer
dielectric-filled cavities. The dimensions of the cavity were set
to be 1 2 1.5 m in the -, -, and -directions, respectively,
in all of these cases.

We begin with an empty cavity that is discretized with 2
4 3 cells. The frequency spectrum of sampled at the grid
point is displayed in Fig. 4, and the extracted resonant
frequencies for the dominant and higher order modes are sum-
marized in Table II along with the discretization parameters.
It is evident that the results obtained with the MRTD scheme
show good agreement with both the analytical results and with
those derived by using the FDTD. However, the MRTD scheme
demands only 0.8% of the computational resources needed in
the conventional FDTD technique. In addition, we have inves-
tigated the required CPU time for conventional MRTD and the

TABLE II
RESONANT FREQUENCIES INMEGAHERTZ FOR ANEMPTY CAVITY

(V = 1� 2� 1:5 m ; �x = �y = �z = 1=2 m)

Fig. 5. Frequency spectrum ofE at the location[1; 2; 1] for a dielectric cavity
with 50% filling.

MIT–MRTD schemes. For a total time step of , it is
found that the CPU time for the conventional MRTD is about
19.27 s, while that of the MIT–MRTD requires about 27.08 s
by using a 500-MHz Alpha digital workstation. Obviously, this
increment of the CPU time is due to the use of additional images
in the process of implementing the MIT–MRTD technique. Spe-
cially, we use five images along the positive and negative-di-
rections, and three in the remaining directions. By comparison,
the conventional MRTD uses only a single image irrespective of
the direction. We also note that the introduction of the MIT in
the MRTD scheme enhances the accuracy of the results.

The MRTD analysis of the half- and quarter-filled dielectric
cavities, with and , respec-
tively, also yields excellent results, as is evident from Figs. 5
and 6 and Tables III and IV. Once again, the MRTD scheme is
found to be highly efficient, when compared to the conventional
FDTD method, since it requires only 0.8% and 1.2% of the CPU
memory for the above two cases. The accuracy of the MRTD
technique is again improved (except one frequency point) when
it is combined with the MIT.

Next, we consider a two-layer dielectric-filled cavity using
only 2 6 3 cells to discretize the computational domain.
We investigate the following two cases: and

with cells. The structure
dimensions still remain m . We also ana-
lyze the same problem using the traditional FDTD mesh with
a discretization of cm and cm, i.e.,
40 40 50 cells. As seen from Figs. 7 and 8 and from Table V,
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Fig. 6. Frequency spectrum ofE at [1; 3; 1] for a dielectric cavity with 25%
filling.

TABLE III
RESONANT FREQUENCIES INMEGAHERTZ FOR APARTIALLY FILLED

DIELECTRIC CAVITY WITH 50% FILLING (" = " = 64;N = N =
1:5;V = 1� 2� 1:5 m ; �x = �y = �z = 1=2 m)

TABLE IV
RESONANT FREQUENCIES INMEGAHERTZ FOR APARTIALLY FILLED

DIELECTRIC CAVITY WITH 25% FILLING (" = 64; " = 1;N = N =
1:5;V = 1� 2� 1:5 m ;�x = �z = 1=2;�y = 1=3 m)

Fig. 7. Frequency spectrum ofE of a two-layer dielectric-loaded cavity.

the two sets of computed results agree very well with each other
and the percentage differences are 0.038% and 0.343%, for both

Fig. 8. Frequency spectrum ofE for a two-layer dielectric-loaded cavity.

TABLE V
RESONANT FREQUENCIES IN MEGAHERTZ FOR

A TWO-LAYER DIELECTRIC-FILLED CAVITY

(N = N = 1:5;V = 1� 2� 1:5 m ; �x = �z = 1=2;�y = 1=3 m)

Fig. 9. Effective dielectric constant" versus frequency of a shielded
microstrip line withw = h = 1:27; a = b = 12:7 mm.

cases, respectively. However, the MIT-MRTD scheme only uses
0.045% of the computational resources relative to the conven-
tional FDTD algorithm.

B. 2-D MRTD Application

We consider a shielded microstrip line shown in Fig. 3(a),
whose trace is assumed very thin and perfectly conducting.
Fig. 9 shows that the propagation characteristics derived from
an application of the present 2-D MRTD scheme agree quite
well with those derived from the spectral-domain approach
(SDA) [13].
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(a)

(b)

Fig. 10. Frequency dependence of propagation characteristics of a shielded
microstrip line withw = h = 1:5; a = 6:5; b = 3:5 mm; " = " =
9:4; " = 11:6. (a)" . (b) Magnitude ofZ in 
.

TABLE VI
DISCRETIZATION DIMENSIONS OF A SHIELDED MICROSTRIPLINE

(" = " = 9:4; " = 11:6)

Next, we study the propagation characteristics of a shielded
microstrip line, shown in Fig. 3(a), whose dimensions and
substrate material are given in the caption of Fig. 10. We
observe, from Fig. 10, that the MRTD-computed results are in
good agreement with those published in the literature, derived
by using the FDTD [11]. For this case, the distance from the
air–dielectric interface of the structure to the inner surface of
the APML is seven cells. The corresponding discretization
parameters employed in the FDTD and MRTD methods are
summarized in Table VI, and a comparison of the total number

(a)

(b)

Fig. 11. Frequency dependence of propagation characteristics of an open
microstrip line withw=h = 1:5; h = 0:10 mm; " = 13:3. (a) " .
(b) Magnitude ofZ in 
.

TABLE VII
DISCRETIZATION DIMENSIONS OF ANOPENMICROSTRIPLINE (" = 13:0)

of cells needed in the MRTD and FDTD technique is presented
in Table VI, and the relative advantage of the former is evident
from the table.

Finally, we investigate an open microstrip line, whose geom-
etry is specified in Fig. 3(b). Once again, from Fig. 11, we ob-
serve good agreement between the computed results and those
derived by using the FDTD method [11], [14], as well as the em-
pirical approach [15], [16]. The corresponding discretization pa-
rameters employed in the FDTD and MRTD methods are sum-
marized Table VII. We note that the memory required in the 2-D
MRTD method is only about 6.25% or 7.64% of the 2-D-FDTD
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scheme for the same shielded and open microstrip lines, respec-
tively. We further notice that, to ensure computational accuracy,
we must employ at least two cells along the width of the narrow
PEC strip.

V. CONCLUSION

In this paper we have presented an adjustable MIT, which can
be incorporated in the MRTD scheme for the boundary trun-
cation of PEC-shielded structures. We have also developed a
2-D version of the MRTD and have applied it in conjunction
with an APML mesh truncation technique for the analysis of
both shielded and open microstrip lines. We have developed a
systematic technique for constructing the multiple images, ex-
tracting the constitutive relations, deriving the update equations,
and determining the number of images in the transform domain
of the MRTD. The propagation characteristics computed via the
MRTD have been shown to be in good agreement with those ob-
tained by using other numerical techniques. The computational
resources needed in the MRTD scheme are only a small fraction
of those of the FDTD algorithm, albeit the computational com-
plexity is higher in the MRTD.
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